Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.591
Filtrar
1.
BMJ Open ; 14(4): e082764, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604630

RESUMO

INTRODUCTION: Poststroke cognitive impairment is a common complication in stroke survivors, seriously affecting their quality of life. Therefore, it is crucial to improve cognitive function of patients who had a stroke. Transcranial direct current stimulation (tDCS) and transcutaneous auricular vagus nerve stimulation (taVNS) are non-invasive, safe treatments with great potential to improve cognitive function in poststroke patients. However, further improvements are needed in the effectiveness of a single non-invasive brain stimulation technique for cognitive rehabilitation. This study protocol aims to investigate the effect and neural mechanism of the combination of tDCS and taVNS on cognitive function in patients who had a stroke. METHODS AND ANALYSIS: In this single-centre, prospective, parallel, randomised controlled trial, a total of 66 patients with poststroke cognitive impairment will be recruited and randomly assigned (1:1:1) to the tDCS group, the taVNS group and the combination of tDCS and taVNS group. Each group will receive 30 min of treatment daily, five times weekly for 3 weeks. Primary clinical outcome is the Montreal Cognitive Assessment. Secondary clinical outcomes include the Mini-Mental State Examination, Stroop Colour Word Test, Trail Marking Test, Symbol Digit Modalities Test and Modified Barthel Index. All clinical outcomes, functional MRI and diffusion tensor imaging will be measured at preintervention and postintervention. ETHICS AND DISSEMINATION: The trial has been approved by the Ethics Committee of the First Affiliated Hospital of Yangtze University (approval no: KY202390). The results will be submitted for publication in peer-reviewed journals or at scientific conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300076632.


Assuntos
Disfunção Cognitiva , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Estimulação do Nervo Vago , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Imagem de Tensor de Difusão , Estudos Prospectivos , Estimulação do Nervo Vago/métodos , Qualidade de Vida , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Acta Neurochir (Wien) ; 166(1): 193, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662025

RESUMO

Vagal neuropathy causing vocal fold palsy is an uncommon complication of vagal nerve stimulator (VNS) placement. It may be associated with intraoperative nerve injury or with device stimulation. Here we present the first case of delayed, compressive vagal neuropathy associated with VNS coil placement which presented with progressive hoarseness and vocal cord paralysis. Coil removal and vagal neurolysis was performed to relieve the compression. Larger 3 mm VNS coils were placed for continuation of therapy. Coils with a larger inner diameter should be employed where possible to prevent this complication. The frequency of VNS-associated vagal nerve compression may warrant further investigation.


Assuntos
Estimulação do Nervo Vago , Paralisia das Pregas Vocais , Humanos , Estimulação do Nervo Vago/efeitos adversos , Estimulação do Nervo Vago/instrumentação , Estimulação do Nervo Vago/métodos , Paralisia das Pregas Vocais/etiologia , Doenças do Nervo Vago/etiologia , Doenças do Nervo Vago/cirurgia , Síndromes de Compressão Nervosa/etiologia , Síndromes de Compressão Nervosa/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Nervo Vago
3.
Physiol Rep ; 12(6): e15981, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38508860

RESUMO

Reports on autonomic responses to transcutaneous auricular vagus nerve stimulation (taVNS) and osteopathic manipulative techniques have been equivocal, partly due to inconsistent interpretation of heart rate variability (HRV). We developed a mechanistic framework for the interpretation of HRV based on a model of sinus node automaticity that considers autonomic effects on Phase 3 repolarization and Phase 4 depolarization of the sinoatrial action potential. The model was applied to HRV parameters calculated from ECG recordings (healthy adult humans, both genders) before (30 min), during (15 min), and after (30 min) a time control intervention (rest, n = 23), taVNS (10 Hz, 300 µs, 1-2 mA, cymba concha, left ear, n = 12), or occipitoatlantal decompression (OA-D, n = 14). The experimental protocol was repeated on 3 consecutive days. The model simulation revealed that low frequency (LF) HRV best predicts sympathetic tone when calculated from heart rate time series, while high frequency (HF) HRV best predicts parasympathetic tone when calculated from heart period time series. Applying our model to the HRV responses to taVNS and OA-D, revealed that taVNS increases cardiac parasympathetic tone, while OA-D elicits a mild decrease in cardiac sympathetic tone.


Assuntos
Osteopatia , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Adulto , Humanos , Masculino , Feminino , Frequência Cardíaca/fisiologia , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiologia , Sistema Nervoso Autônomo/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos
4.
Brain Behav ; 14(3): e3452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468454

RESUMO

INTRODUCTION: Invasive neuromodulation interventions such as deep brain stimulation (DBS) and vagal nerve stimulation (VNS) are important treatments for movement disorders and epilepsy, but literature focused on young patients treated with DBS and VNS is limited. This retrospective study aimed to examine naturalistic outcomes of VNS and DBS treatment of epilepsy and dystonia in children, adolescents, and young adults. METHODS: We retrospectively assessed patient demographic and outcome data that were obtained from electronic health records. Two researchers used the Clinical Global Impression scale to retrospectively rate the severity of neurologic and psychiatric symptoms before and after patients underwent surgery to implant DBS electrodes or a VNS device. Descriptive and inferential statistics were used to examine clinical effects. RESULTS: Data from 73 patients were evaluated. Neurologic symptoms improved for patients treated with DBS and VNS (p < .001). Patients treated with DBS did not have a change in psychiatric symptoms, whereas psychiatric symptoms worsened for patients treated with VNS (p = .008). The frequency of postoperative complications did not differ between VNS and DBS groups. CONCLUSION: Young patients may have distinct vulnerabilities for increased psychiatric symptoms during treatment with invasive neuromodulation. Child and adolescent psychiatrists should consider a more proactive approach and greater engagement with DBS and VNS teams that treat younger patients.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Distonia , Epilepsia , Estimulação do Nervo Vago , Criança , Adolescente , Adulto Jovem , Humanos , Estudos Retrospectivos , Estimulação Encefálica Profunda/efeitos adversos , Estimulação do Nervo Vago/efeitos adversos , Epilepsia/etiologia , Distonia/etiologia , Resultado do Tratamento , Epilepsia Resistente a Medicamentos/terapia
5.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542385

RESUMO

Vitiligo is a complex skin disorder that involves oxidative stress and inflammatory responses and currently lacks a definitive cure. Transcutaneous auricular vagus nerve stimulation (taVNS) is a noninvasive method for targeting the auricular branch of the vagus nerve and has gained widespread attention for potential intervention in the autonomic nervous system. Although previous research has suggested that vagus nerve stimulation can potentially inhibit inflammatory responses, its specific role and mechanisms in vitiligo treatment remain unknown. This study aimed to explore the therapeutic effects of taVNS in a mouse model of vitiligo induced by monobenzone. Initially, a quantitative assessment of the treatment effects on vitiligo mice was conducted using a scoring system, revealing that taVNS significantly alleviated symptoms, particularly by reducing the depigmented areas. Subsequent immunohistochemical analysis revealed the impact of taVNS treatment on melanocyte granules, mitigating pigment loss in the skin of monobenzone-induced vitiligo mice. Further analysis indicated that taVNS exerted its therapeutic effects through multiple mechanisms, including the regulation of oxidative stress, enhancement of antioxidant capacity, promotion of tyrosine synthesis, and suppression of inflammatory responses. The conclusions of this study not only emphasize the potential value of taVNS in vitiligo therapy, but also lay a foundation for future research into the mechanisms and clinical applications of taVNS.


Assuntos
Estimulação do Nervo Vago , Vitiligo , Animais , Camundongos , Vitiligo/induzido quimicamente , Vitiligo/terapia , Hidroquinonas , Nervo Vago
6.
J Neural Eng ; 21(2)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38479016

RESUMO

Objective.In bioelectronic medicine, neuromodulation therapies induce neural signals to the brain or organs, modifying their function. Stimulation devices capable of triggering exogenous neural signals using electrical waveforms require a complex and multi-dimensional parameter space to control such waveforms. Determining the best combination of parameters (waveform optimization or dosing) for treating a particular patient's illness is therefore challenging. Comprehensive parameter searching for an optimal stimulation effect is often infeasible in a clinical setting due to the size of the parameter space. Restricting this space, however, may lead to suboptimal therapeutic results, reduced responder rates, and adverse effects.Approach. As an alternative to a full parameter search, we present a flexible machine learning, data acquisition, and processing framework for optimizing neural stimulation parameters, requiring as few steps as possible using Bayesian optimization. This optimization builds a model of the neural and physiological responses to stimulations, enabling it to optimize stimulation parameters and provide estimates of the accuracy of the response model. The vagus nerve (VN) innervates, among other thoracic and visceral organs, the heart, thus controlling heart rate (HR), making it an ideal candidate for demonstrating the effectiveness of our approach.Main results.The efficacy of our optimization approach was first evaluated on simulated neural responses, then applied to VN stimulation intraoperatively in porcine subjects. Optimization converged quickly on parameters achieving target HRs and optimizing neural B-fiber activations despite high intersubject variability.Significance.An optimized stimulation waveform was achieved in real time with far fewer stimulations than required by alternative optimization strategies, thus minimizing exposure to side effects. Uncertainty estimates helped avoiding stimulations outside a safe range. Our approach shows that a complex set of neural stimulation parameters can be optimized in real-time for a patient to achieve a personalized precision dosing.


Assuntos
Estimulação do Nervo Vago , Humanos , Animais , Suínos , Estimulação do Nervo Vago/métodos , Teorema de Bayes , Nervo Vago/fisiologia , Coração , Fibras Nervosas Mielinizadas
7.
Inflammopharmacology ; 32(2): 1005-1015, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512653

RESUMO

The gut and the brain communicate bidirectionally through the autonomic nervous system. The vagus nerve is a key component of this gut-brain axis, and has numerous properties such as anti-inflammatory, antinociceptive, anti-depressive effects. A perturbation of this gut-brain communication is involved in the pathogeny of functional digestive disorders, such as irritable bowel syndrome, and inflammatory bowel diseases. Stress plays a role in the pathogeny of these diseases, which are biopsychosocial models. There are presently unmet needs of pharmacological treatments of these chronic debilitating diseases. Treatments are not devoid of side effects, cost-effective, do not cure the diseases, can lose effects over time, thus explaining the poor satisfaction of patients, their lack of compliance, and their interest for non-drug therapies. The gut-brain axis can be targeted for therapeutic purposes in irritable bowel syndrome and inflammatory bowel disease through non-drug therapies, such as hypnosis and vagus nerve stimulation, opening up possibilities for responding to patient expectations.


Assuntos
Hipnose , Doenças Inflamatórias Intestinais , Síndrome do Intestino Irritável , Estimulação do Nervo Vago , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Encéfalo
8.
J Affect Disord ; 354: 82-88, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452937

RESUMO

BACKGROUND: It is a well-established fact that post-stroke depression (PSD) is a prevalent condition that affects a significant proportion of individuals who have suffered a stroke. Hence, our research endeavors to explore the safety, efficacy and the potential molecular mechanism of transcutaneous auricular vagus nerve stimulation (ta-VNS) for the treatment of depression in PSD patients by conducting a double-blind, sham-controlled, randomized trial. METHODS: Patients who had experienced strokes and exhibited depressive symptoms, with a Hamilton Depression Scale (HAMD-17) score of ≥8 and met the DSM-IV criteria, were diagnosed with PSD. A volunteer sample of participants (N = 80) were randomly divided into either the ta-VNS group (which received ta-VNS in addition to conventional treatment) or the control group (which received conventional treatment only), in a 1:1 ratio. The effectiveness of the interventions was evaluated using the 17-item Hamilton Rating Scale for Depression (HAMD-17), Zung Self-Rating Depression Scale (SDS), and Barthel Index (BI) scores. Furthermore, Plasma BDNF, CREB1, and 5-HT levels were measured before and after treatment. RESULTS: The concomitant application of ta-VNS demonstrated a remarkable reduction in HAMD-17 and SDS scores, leading to noteworthy enhancements in patients' daily functioning, as evidenced by improved activities of daily living, at all assessed time points, in contrast to the control group (p < 0.0001). Notably, the ta-VNS group exhibited superior effects in modulating the measured neurotrophic biomarkers when compared to the control group (p < 0.05). CONCLUSIONS: The synergistic approach of combining ta-VNS with conventional treatment has demonstrated remarkable efficacy and tolerability in managing depression following a stroke.


Assuntos
Acidente Vascular Cerebral , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Depressão/etiologia , Depressão/terapia , Estimulação do Nervo Vago/efeitos adversos , Atividades Cotidianas , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Método Duplo-Cego , Nervo Vago , Resultado do Tratamento
9.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473935

RESUMO

Vagal neurostimulation (VNS) is used for the treatment of epilepsy and major medical-refractory depression. VNS has neuropsychiatric functions and systemic anti-inflammatory activity. The objective of this study is to measure the clinical efficacy and impact of VNS modulation in depressive patients. Six patients with refractory depression were enrolled. Depression symptoms were assessed with the Montgomery-Asberg Depression Rating, and anxiety symptoms with the Hamilton Anxiety Rating Scale. Plasmas were harvested prospectively before the implantation of VNS (baseline) and up to 4 years or more after continuous therapy. Forty soluble molecules were measured in the plasma by multiplex assays. Following VNS, the reduction in the mean depression severity score was 59.9% and the response rate was 87%. Anxiety levels were also greatly reduced. IL-7, CXCL8, CCL2, CCL13, CCL17, CCL22, Flt-1 and VEGFc levels were significantly lowered, whereas bFGF levels were increased (p values ranging from 0.004 to 0.02). This exploratory study is the first to focus on the long-term efficacy of VNS and its consequences on inflammatory biomarkers. VNS may modulate inflammation via an increase in blood-brain barrier integrity and a reduction in inflammatory cell recruitment. This opens the door to new pathways involved in the treatment of refractory depression.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Estimulação do Nervo Vago , Humanos , Projetos Piloto , Transtorno Depressivo Resistente a Tratamento/psicologia , Depressão , Resultado do Tratamento , Inflamação
10.
Epilepsia Open ; 9(2): 704-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318727

RESUMO

OBJECTIVE: Evaluate the long-term efficacy of vagus nerve stimulation (VNS) in patients with developmental and epileptic encephalopathies (DEE) compared with epilepsy patients without intellectual disability (ID). METHODS: Long-term outcomes from a Norwegian VNS quality registry are reported in 105 patients with DEEs (Lennox-Gastaut syndrome [LGS] n = 62; Dravet n = 16; Rett n = 9; other syndromes n = 18) were compared with 212 epilepsy patients without ID, with median follow-up of 88 and 72 months, respectively. Total seizure reduction was evaluated at 6, 12, 24, 36, and 60 months. Effect on different seizure types was evaluated at baseline and last observation carried forward (LOCF). RESULTS: Median monthly seizure frequency at LOCF was reduced by 42.2% (p < 0.001) in patients with DEE and by 55.8% (p < 0.001) in patients without ID. In DEE patients, ≥50% seizure reduction at 6 and 24 months were 17.1% and 37.1%, respectively, and 33.5% and 48.6% for patients without ID. Seizure reduction ≥75% at 60 months occurred in 14.3% of DEE patients and 23.1% of patients without ID. Highest median reduction was for atonic seizures, most notably 64.6% for LGS patients. A better effect was seen at 2 years among DEE patients with unchanged medication compared with those with changed medication (54.5% vs. 35.6% responders, p = 0.078). More DEE patients were reported to have greater improvement in ictal or postictal severity (43.8% vs. 28.3%, p = 0.006) and alertness (62.9% vs. 31.6%, p < 0.001) than patients without ID. For both groups, use of the magnet reduced seizure severity. Hoarseness was the most common adverse effect in both groups. In addition, DEE patients were frequently reported to have sleep disturbance, general discomfort, or abdominal problems. SIGNIFICANCE: Our data indicate that VNS is very effective for atonic seizures. Patients without ID had best overall seizure reduction, however, patients with DEE had higher retention rates probably due to other positive effects. PLAIN LANGUAGE SUMMARY: DEE refers to a group of patients with severe epilepsy and intellectual disability. Many of these patients have restricted lifestyles with frequent seizures. VNS is a treatment option for patients who do not respond well to medicines, either because of insufficient effect or serious adverse effects. Our study shows that VNS is well tolerated in this patient group and leads to a reduction in all seizure types, most notably for seizures leading to fall. Many patients experience other positive effects like shorter and milder seizures, as well as improvement in alertness.


Assuntos
Epilepsia , Deficiência Intelectual , Síndrome de Lennox-Gastaut , Estimulação do Nervo Vago , Humanos , Estimulação do Nervo Vago/efeitos adversos , Deficiência Intelectual/terapia , Deficiência Intelectual/etiologia , Resultado do Tratamento , Epilepsia/terapia , Convulsões/etiologia , Síndrome de Lennox-Gastaut/terapia
12.
CNS Neurosci Ther ; 30(2): e14614, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358062

RESUMO

BACKGROUND: Transcutaneous auricular vagus nerve stimulation (taVNS) is a crucial neuromodulation therapy for depression, yet its molecular mechanism remains unclear. Here, we aim to unveil the underlying mechanisms of antidepression by systematically evaluating the change of gene expression in different brain regions (i.e., hippocampus, anterior cingulate cortex, and medial prefrontal cortex). METHODS: The adolescent depression rat model was established by chronic unpredictable mild stress (CUMS), followed by the taVNS treatment for 3 weeks. The open field test (OFT), forced swimming test (FST), elevated plus maze test (EPM), and new object recognition (NOR) test were used to evaluate depressive- and anxiety-like behaviors. Gene expression analysis of three brain regions was conducted by RNA sequencing (RNA-seq) and further bioinformatics methods. RESULTS: The depressive- and anxiety-like behaviors in CUMS-exposed rats were manifested by decreased spontaneous locomotor activity of OFT, increased immobility time of FST, increased entries and time in the closed arms of EPM, and decreased new object index of NOR. Furthermore, CUMS exposure also led to alterations in gene expression within the hippocampus (HIP), anterior cingulate cortex (ACC), and medial prefrontal cortex (mPFC), suggesting a potential link between adolescent stress and pathological changes within these brain regions. TaVNS could significantly ameliorate depressive- and anxiety-like behaviors. Its effects on these three brain regions were found related to regulation of the metabolism, and there were some brain region-specific findings. Compared with ACC and mPFC, taVNS has a more concrete effect on HIP by regulating the inflammation response and glycolysis. CONCLUSION: taVNS is capable of ameliorating adolescent depressive- and anxiety-like behaviors by regulating plenty of genes in the three brain regions. Suppressed level of inflammatory response and enhanced glycolysis manifests the dominant role of taVNS in HIP, which provides a theoretical foundation and data support for the molecular mechanism of antidepression by taVNS.


Assuntos
Estimulação do Nervo Vago , Ratos , Animais , Encéfalo , Hipocampo/metabolismo , Ansiedade/terapia , Nervo Vago , Inflamação/terapia , Inflamação/metabolismo
13.
Neurobiol Dis ; 193: 106440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369213

RESUMO

Limited treatment options have been shown to alter the natural course of constipation-predominant irritable bowel syndrome (IBS-C). Therefore, safer and more effective approaches are urgently needed. We investigated the effects of transcutaneous auricular vagus nerve stimulation (taVNS) in a mouse model of IBS-C. In the current study, C57BL/6 mice were randomly divided into normal control, IBS-C model control, sham-electrostimulation (sham-ES), taVNS, and drug treatment groups. The effects of taVNS on fecal pellet number, fecal water content, and gastrointestinal transit were evaluated in IBS-C model mice. We assessed the effect of taVNS on visceral hypersensitivity using the colorectal distention test. 16S rRNA sequencing was used to analyze the fecal microbiota of the experimental groups. First, we found that taVNS increased fecal pellet number, fecal water content, and gastrointestinal transit in IBS-C model mice compared with the sham-ES group. Second, taVNS significantly decreased the abdominal withdrawal reflex (AWR) score compared with the sham-ES group, thus relieving visceral hyperalgesia. Third, the gut microbiota outcomes showed that taVNS restored Lactobacillus abundance while increasing Bifidobacterium probiotic abundance at the genus level. Notably, taVNS increased the number of c-kit-positive interstitial cells of Cajal (ICC) in the myenteric plexus region in IBS-C mice compared with the sham-ES group. Therefore, our study indicated that taVNS effectively ameliorated IBS-C in the gut microbiota and ICC.


Assuntos
Síndrome do Intestino Irritável , Estimulação do Nervo Vago , Camundongos , Animais , Síndrome do Intestino Irritável/terapia , Síndrome do Intestino Irritável/microbiologia , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Constipação Intestinal/etiologia , Constipação Intestinal/terapia , Água , Nervo Vago
14.
Biomed Pharmacother ; 173: 116344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412716

RESUMO

BACKGROUND: Depression is closely linked to an imbalance in the autonomic nervous system (ANS). However, the role of this imbalance in mediating the effects of sleep deprivation (SD) and vagus nerve stimulation (VNS) on emotional well-being is not fully understood. METHODS: A population-based analysis was conducted to explore the relationship between sleep duration, depression scores, and heart rate variability (HRV). Additionally, the chronic SD mouse model was established to assess the impact of preventive transcutaneous auricular VNS (taVNS) on pathological and behavioral changes. RESULTS: Our study found a significant link between sleep duration, depression severity, and HRV. Shorter sleep duration was associated with higher depression scores and lower RMSSD (a measure of HRV). In our rat model, insufficient sleep consistently impaired HRV. This effect was mitigated by taVNS, accompanied by corresponding changes in levels of IL-1ß and IL-6, astrocyte and microglia activation, and tail suspension times. CONCLUSIONS: Using VNS as a preventive treatment for depression-risk individuals with insufficient sleep shows promise. It not only broadens the potential applications of VNS but also sheds light on its mechanism-particularly its role in enhancing vagal nerve function and balancing the ANS, as evidenced by HRV measurements.


Assuntos
Privação do Sono , Estimulação do Nervo Vago , Camundongos , Ratos , Animais , Depressão/prevenção & controle , Sistema Nervoso Autônomo , Fatores de Tempo
15.
Clin Neurophysiol ; 160: 95-107, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38412747

RESUMO

The goal of this review is to synthesize the literature on vagus nerve stimulator (VNS)-related changes in heart rate variability (HRV) in patients with drug-resistant epilepsy (DRE) and assess the role of these changes in seizure relief. A scoping literature review was performed with the following inclusion criteria: primary articles written in English, involved implantable VNS in humans, and had HRV as a primary outcome. Twenty-nine studies were retrieved, however with considerable heterogeneity in study methods. The overall depression in HRV seen in DRE patients compared to healthy controls persisted even after VNS implant, indicating that achieving "healthy" HRV is not necessary for VNS therapeutic success. Within DRE patients, changes in frequency domain parameters six months after VNS implant returned to baseline after a year. The mechanism of how VNS reduces seizure burden does not appear to be significantly related to alterations in baseline HRV. However, the subtlety of sympathetic/parasympathetic signaling likely requires a more structured approach to experimental and analytic techniques than currently found in the literature.


Assuntos
Epilepsia Resistente a Medicamentos , Estimulação do Nervo Vago , Humanos , Frequência Cardíaca/fisiologia , Estimulação do Nervo Vago/métodos , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/terapia , Convulsões , Neuroestimuladores Implantáveis , Nervo Vago , Resultado do Tratamento
16.
Cephalalgia ; 44(2): 3331024241230466, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329067

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) was recently found to inhibit cortical spreading depression (CSD), the underlying mechanism of migraine aura, through activation of the nucleus tractus solitarius (NTS), locus coeruleus (LC) and dorsal raphe nucleus (DRN). The molecular mechanisms underlying the effect of VNS on CSD in these nuclei remain to be explored. We hypothesized that VNS may activate glutamate receptor-mediated tropomyosin kinase B (TrkB) signaling in the NTS, thereby facilitating the noradrenergic and serotonergic neurotransmission to inhibit CSD. METHODS: To investigate the role of TrkB and glutamate receptors in non-invasive VNS efficacy on CSD, a validated KCl-evoked CSD rat model coupled with intra-NTS microinjection of selective antagonists, immunoblot and immunohistochemistry was employed. RESULTS: VNS increased TrkB phosphorylation in the NTS. Inhibition of intra-NTS TrkB abrogated the suppressive effect of VNS on CSD and CSD-induced cortical neuroinflammation. TrkB was found colocalized with glutamate receptors in NTS neurons. Inhibition of glutamate receptors in the NTS abrogated VNS-induced TrkB activation. Moreover, the blockade of TrkB in the NTS attenuated VNS-induced activation of the LC and DRN. CONCLUSIONS: VNS induces the activation of glutamate receptor-mediated TrkB signaling in the NTS, which might modulate serotonergic and norepinephrinergic innervation to the cerebral cortex to inhibit CSD and cortical inflammation.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Proteínas Quinases , Estimulação do Nervo Vago , Ratos , Animais , Núcleo Solitário/fisiologia , Ácido Glutâmico , Nervo Vago/fisiologia , Receptores de Glutamato
17.
J Vis Exp ; (203)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314807

RESUMO

Abdominal vagus nerve stimulation (VNS) can be applied to the subdiaphragmatic branch of the vagus nerve of rats. Due to its anatomical location, it does not have any respiratory and cardiac off-target effects commonly associated with cervical VNS. The lack of respiratory and cardiac off-target effects means that the intensity of stimulation does not need to be lowered to reduce side effects commonly experienced during cervical VNS. Few recent studies demonstrate the anti-inflammatory effects of abdominal VNS in rat models of inflammatory bowel disease, rheumatoid arthritis, and glycemia reduction in a rat model of type 2 diabetes. Rat is a great model to explore the potential of this technology because of the well-established anatomy of the vagus nerve, the large size of the nerve that allows easy handling, and the availability of many disease models. Here, we describe the methods for cleaning and sterilizing the abdominal VNS electrode array and surgical protocol in rats. We also describe the technology required for confirmation of suprathreshold stimulation by recording evoked compound action potentials. Abdominal VNS has the potential to offer selective, effective treatment for a variety of conditions, including inflammatory diseases, and the application is expected to expand similarly to cervical VNS.


Assuntos
Diabetes Mellitus Tipo 2 , Estimulação do Nervo Vago , Ratos , Animais , Estimulação do Nervo Vago/métodos , Vigília , Nervo Vago/cirurgia , Nervo Vago/fisiologia , Coração
18.
J Vis Exp ; (203)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314847

RESUMO

Several studies have demonstrated promising results of transcutaneous auricular vagus nerve stimulation (taVNS) in treating various disorders; however, no mechanistic studies have investigated this technique's neural network and autonomic nervous system effects. This study aims to describe how taVNS can affect EEG metrics, HRV, and pain levels. Healthy subjects were randomly allocated into two groups: the active taVNS group and the sham taVNS group. Electroencephalography (EEG) and Heart Rate Variability (HRV) were recorded at baseline, 30 min, and after 60 min of 30 Hz, 200-250 µs taVNS, or sham stimulation, and the differences between the metrics were calculated. Regarding vagal projections, some studies have demonstrated the role of the vagus nerve in modulating brain activity, the autonomic system, and pain pathways. However, more data is still needed to understand the mechanisms of taVNS on these systems. In this context, this study presents methods to provide data for a deeper discussion about the physiological impacts of this technique, which can help future therapeutic investigations in various conditions.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Frequência Cardíaca , Sistema Nervoso Autônomo , Eletroencefalografia , Dor , Nervo Vago
19.
Hum Brain Mapp ; 45(3): e26613, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38379451

RESUMO

It has recently been suggested that predictive processing principles may apply to interoception, defined as the processing of hormonal, autonomic, visceral, and immunological signals. In the current study, we aimed at providing empirical evidence for the role of cardiac interoceptive prediction errors signals on allostatic adjustments, using transcutaneous auricular vagus nerve stimulation (taVNS) as a tool to modulate the processing of interoceptive afferents. In a within-subject design, participants performed a cardiac-related interoceptive task (heartbeat counting task) under taVNS and sham stimulation, spaced 1-week apart. We observed that taVNS, in contrast to sham stimulation, facilitated the maintenance of interoceptive accuracy levels over time (from the initial, stimulation-free, baseline block to subsequent stimulation blocks), suggesting that vagus nerve stimulation may have helped to maintain engagement to cardiac afferent signals. During the interoceptive task, taVNS compared to sham, produced higher heart-evoked potentials (HEP) amplitudes, a potential readout measure of cardiac-related prediction error processing. Further analyses revealed that the positive relation between interoceptive accuracy and allostatic adjustments-as measured by heart rate variability (HRV)-was mediated by HEP amplitudes. Providing initial support for predictive processing accounts of interoception, our results suggest that the stimulation of the vagus nerve may increase the precision with which interoceptive signals are processed, favoring their influence on allostatic adjustments.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Coração , Frequência Cardíaca/fisiologia
20.
Sci Rep ; 14(1): 3975, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368486

RESUMO

Accurate senses depend on high-fidelity encoding by sensory receptors and error-free processing in the brain. Progress has been made towards restoring damaged sensory receptors. However, methods for on-demand treatment of impaired central sensory processing are scarce. Prior invasive studies demonstrated that continuous vagus nerve stimulation (VNS) in rodents can activate the locus coeruleus-norepinephrine system to rapidly improve central sensory processing. Here, we investigated whether transcutaneous VNS improves sensory performance in humans. We conducted three sham-controlled experiments, each with 12 neurotypical adults, that measured the effects of transcutaneous VNS on metrics of auditory and visual performance, and heart rate variability (HRV). Continuous stimulation was delivered to cervical (tcVNS) or auricular (taVNS) branches of the vagus nerve while participants performed psychophysics tasks or passively viewed a display. Relative to sham stimulation, tcVNS improved auditory performance by 37% (p = 0.00052) and visual performance by 23% (p = 0.038). Participants with lower performance during sham conditions experienced larger tcVNS-evoked improvements (p = 0.0040). Lastly, tcVNS increased HRV during passive viewing, corroborating vagal engagement. No evidence for an effect of taVNS was observed. These findings validate the effectiveness of tcVNS in humans and position it as a method for on-demand interventions of impairments associated with central sensory processing dysfunction.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Adulto , Humanos , Projetos Piloto , Estimulação do Nervo Vago/métodos , Encéfalo/fisiologia , Locus Cerúleo , Estimulação Elétrica Nervosa Transcutânea/métodos , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...